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Preface

Under Contract No. F49620-C-89-0038, NTNF/NORSAR is conducting research within a wide
range of subjects relevant to seismic monitoring. The emphasis of the research program is on
developing and assessing methods for processing of data recorded by networks of small-aperture
arrays and 3-componcnt stations. for events both at regional and telescismic distances. In addition,
more general seismological research topics are addressed.

Each quarterly technical report under this contract presents one or several separate investigations
addressing specific problems within the scope of the statement of work. Summaries of the research
efforts within the program as a whole are given in annual technical reports.

This Scientific Report No. 10 presents a manuscript entitled "Diffraction and seismic tomography",
by D.J. Doornbos.
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Summary

Diffraction tomography is formulated in such a way that the data (travel time - or
waveform perturbations) are related to the medium perturbations through the sum of
two terms. The first term is the ray integral of ordinary tomography and involves only
phase perturbations. The additional diffraction term involves both phase- and
amplitude perturbations. The diffraction term is linear in the gradients of the velocity
perturbation in an acoustic medium, the gradients of the elastic and density
perturbations in an elastic medium, and the gradients of the boundary perturbations
the wave is crossing. This formulation has the additional advantage that unwanted
diffractions from the nonphysical boundary of the region under study can be easily
removed. Acoustic scattering, elastic scattering, and scattering by boundary
perturbations are analysed separately. Attention is paid to the adequacy of the
acoustic approximation, and to the difference between perturbations of a boundary
level (topography) and perturbations of boundary conditions. These differences are
irrelevant for ordinary seismic tomography. All results are based on first-order
approximations (Born or Rytov), as is the case for other published methods of
diffraction tomography.
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Introduction

Tomographic methods have played an increasingly important role in many fields
where ray theory is applicable to describe the propagation of waves. Very efficient
inversion alporithms have been developed for situations where sources and receivers
are placed at regular intervals in a homogeneous background medium, as is common
in X-ray medical applications (Barrett, 1984). Similar algorithms have been used in
seismic cross-well tomography (see e.g. Worthington, 1984, and references therein).
However in seismological applications, sources and receivers are usually located at
irregular intervals, and the homogeneous background medium is often not a good
assumption. To some extent the same may be true for cross-well tomography. Thus
seismic tomography usually cannot take direct advantage of fast transform methods.
However the problem of travel time inversion can be posed in the form of a general
linearized inverse problem, and in this form seismic tomography has been widely
applied both for exploration purposes (Worthington, 1984; lvansson, 1987), in
lithospheric studies (Aki, Christoffersson and Husebye, 1977) and to study the Earth's
deep interior (Dziewonski, Hager and O'Connell, 1977).

Despite the widespread application of these methods, a number of limitations were
recognized at an early stage. A fundamental limitation is due to the neglect of wave
diffraction off the geometrical ray path. This neglect limits the resolution of
tomographic results in general. The limitation is especially serious in circumstances
where diffraction effects dominate the observations, as may be expected in the
presence of low-veocity regions among others (Wielandt, 1987). To overcome these
limitations, diffraction effects have been taken into account, in a first-order
approximation, in methods called diffraction tomography (e.g. Devaney, 1984). It was
later recognized that these methods, when applied to reflection data, are closely
connected to wavefront migration (Miller, Oristaglio and Beylkin, 1987). However in
accord with the original formulation of tomography, current methods in diffraction
tomography assume a homogeneous background medium and regular sampling of the
wave field, such that Fourier transform methods can be used for the solution of the
scattering problem at hand. In its present form these methods are of limited use, at
least in earthquake seismology.

In this paper, diffraction tomography will be formulated in such a way that the
observation variable (a travel time residual, or more general a waveform
perturbation) is approximated by the sum of a geometrical ray term which itself is the
basis of ordinary seismic tomography, and a diffraction term which is an integral over
the volume of heterogeneity and over the surface of boundary perturbations. The
integrand is linear in the gradients of heterogeneity perturbations (velocity, elastic
constants, and density) and the gradients of the boundary perturbations sampled by
the wave field. This means that diffraction tomography can still be posed in the form
of a linearized inverse problem. The results are based on first-order scattering theory
as is the case for other publishcd methods of diffraction tomography. In the following
we separately consider acoustic and elastic scattering, and scattering by boundary
perturbations.



Acoustic scattering

Consider the wave motion u(xt) in a medium with velocity c, slowness s=1/c
and density p. The reference medium has velocity c0, slowness s(=1/c0 , and the
wave motion is uV(xt). The slowness perturbation in a volume V is 6s=s-sO, and
the ensuing scattered wave motion is 6u=u-u0 . No density perturbations are assumed
here; acoustic scattering with density variations has been treated by Stolt and Weglein
(1985); perturbations in both the density and in the elastic parameters are treated in
the next section, on elastic scattering. A standard procedure using the Born
approximation gives (eg. Aki and Richards, 1980):

u(X, -- 2pc 8s G*iy ° dv (1)

where G is the Green's tensor for the medium. Let u0 and G be given by ray
theory:

U0 ( , t) = v0 ( ) AO( ) f(t-TO) (2)

G(x, t, t) = v (z) vlv( ) A' (x, ) 8 (t-r1)  (3)

Quantities associated with the incident and scattered wave have superscripts 0 and 1,
respectively; v, vO, vI are unit displacement vec!ors, and AO, A' are amplitude
factors. AO and A' are allowed to be complex, but this requires a generalization of
equations (2) and (3) such that for example Aof(t) is replaced by Re(AO)f(t) -
Irn(AO)g(t), where g(t) is the Hilbert transform of f(t). We assume this
generalization in all the following equations if required, although for simplicity we
have not brought this out in the notation. Substitution in equation (1) gives

8u(X, t) - 2pc A0 AIv (x) (vO.v) 8s f(t-T°-T I ) dv (4)

which is a well-established result (c.f. Coates and Chapman, 1990).

Each component of 6u can he written in the form



8ui(x,t) = -4w (vO.v 1 ) as f(t-r) dV (5)

where T=P7+71

and W = 2pc AOA 1 v., (X) (6)

Equation (5) is transformed into

6ui(x,t) = -f T(t-T) J w (v.v') 6s J dST (7)f ~s.,

where S. is the surface T =constant, and J is the Jacobian of the transformation
(see Fig. 1). The transformation to an integration over what is called isochron
surfaces S. has been applied before (e.g. Haddon and Buchen, 1981; Miller,
Oristaglio and Beylkin, 1987; Cao and Kennett, 1989). The lower integration limit in
the T integral is the stationary travel time of the geometric ray, and we have chosen
the upper limit such that the bounding surface of V coincides with S,. for constant
r,. In the notation it is implicit that we have assumed the stationary travel time Tm

to be a minimum with respect to path variations due to scattering points in V. If Tm

is a maximum with respect to these variations we have to reverse the integration
limits, and for a "minimax" time (i.e. rm is a saddle point with respect to the relevant
path variations) the integral is to be split, but the final results will be essentially the
same. Integration by parts gives

-i(X - 'r_, fW (v*0.v,1) 8 ,d S,,

+ f (t-) f W (V.v1) s J. d SU,S,.

SW(v.v) s i (t--0 dV (8)

where we have neglected the variation of W, since it is coupled to 6s and would
produce a second order effect. (However, variations in W would have to be retained
in a similar integral equation for uO). The integration surface Srm in equation (8)
encloses the infinitesimal volume 6V, about the geometric ray. Let the ray path be
parameterized by a , with limits o0 and a,. Then
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8 Vi= f 8S,.(a) do
o

where SSm is an infinitesimal element of surface normal to the ray in a (see Fig. 1).
Within this surface we can expand the time (Farra and Madariaga, 1987):

+- 8q r C aq (9)
S= +2

where 6q denotes the position (in ray centred coordinates) within 6S., and

C = Q0  _ 0

The 2x2 matrices

( p(ad0) 0IP(ad

define the geometrical spreading between o0 and a and between a1 and a,
respectively (Cerven , 1985). Here p(a) is the 2-D slowness vector, in ray centred
coordinates. For minimum travel time rm, the ouadratic form in equation (9) is
positive for all 6q, and

8qr C 6q = a = constant

is the equation of an ellipse with area 7ra/IC 1/ Hence the surface area 6Sm
bounded by r=constant can be obtained by putting a=2(T-T=26r:

6 Sn(o) = 2n6,t/IVCI /2 (10)

Using this result in equation (8), we have
2 T

Jmd S,, - -71/2 do (11)

4



Moreover, following Coates and Chapman (1990):

1 IQol1/2 i1l1/ 2

S
2  (12)

where

= (at)

is the spreading matrix between 0 and a. The amplitude factor of the incident
wave (equation 2) is

A 0 - ± (pcIo) -1/ 2  (13)

where the ± sign corresponds to the minimum/maximum time character of the ray
between o0 and a; for a minimax ray, I O 1is negative and AO will be imaginary.
The result (13) needs to be generalized if multiple caustics exist. These can be taken
into account by introducing the so-called KMAH index a (Chapman, 1985; Coates
and Chapman, 1990) and replacing AO by JA°1 erp (i7Tt/2). The index a increases
by an integer (normally 1) each time the ray touches a caustic surface.

The amplitude factor of the Green's function (equation 3) is

A' I ± --L (pcpc, 12 11) -1/2 (14)
41i

The rules for the sign, and the required generalization if multiple caustics exist, are
the same as for A0 .

Combining equations (6) and (11)-(14) we can rewrite the firrt term of equation (8):

5



6ur(x.t) = ;f(t-m) f W (v 0 .v 2 ) 6sJ, dS,.

= - 0(,t) f 6sdo (15)
00

where

U m(x, t) : v1 (x) A(x) f(t-Tm) (16)

and A(x) -±(pclQl)-l/2

To proceed with the other terms of equation (8), we attach to each point in V a
unit vector 17 normal to the surface T=constant in the direction of increasing T.
For " not close to the geometric ray:

71 = (po -p) / 1po-P 11 (17)

and

dt/dq Ip p I (18)

where po and pi are the 3-D slowness vectors of the incident and scattered waves,
respectively. In the second term of equation (8) we then have

=J-- (d'rd1]) = 1P-P,L (19)

In the third term of equation (8):

S .V6s / = (p 0 -P) .V8s / IP°-P, (20)

Although this result is not valid close to the ray, it is obvious from symmetry
considerations that, provided 6 s is continuous in any small surface area 6Sm
normal to the ray in c and bounded by 6 r =conslanl:

6



f --- dS - 0

hence v6s does not contribute in a region bounded by 6T =con0slant close to the
ray, and this region can be excluded from integration.

Summarizing, using equation (15), (19) and (20) we rewrite equation (8):

01

u (x, t) - 0 ur(x, t) f 8s do
00

+ f(t-.) f w(v ° .v') 8s dSu
S, U1p -p' I

- W(v°. V )  1P p-p 2.  f (t-t) dV (21)

The first term is just the first term of a Taylor series expansion of u,(x.t) due to a
change in geometrical travel time. Coates and Chapman (1990) obtained the
equivalent phase delay term in the frequency domain, by a different method. The
second term expresses diffraction from the boundary of V. If the boundary is
nonphysical, this term should be deleted (the implicit assumption being Ss=constant
outside V). The third term expresses diffraction due to changes in the velocity
perturbation v6s. Retaining the first and the third term, 6uim and 6ud, we have in
the frequency domain

aui (X , W)- 6 UfJ(,() + 8Uid(Z,)

01

i(a U(,) 1( f 8s do

00

+ 1 FW) W(V.V) -(pOp') v exp (iv) dV (22)

The Rytov approximation is (Tarantola, 1987, page 484):

7



in U 1(Z ) - U1(ZW - ia | 8s dou!"(x, u,(x' (A)) IJ
+ 1 C ~O X (p 0-p') .v~s

+ W(v(.vA) 0 1 .v2 exp{(Iw (,-rm)) d (23)

The first term in the brackets is the usual ray integral of seismic tomography. The
second term is the basis of diffraction tomography. The integration volume V can
be chosen so as to include (an appropriate fraction of) the Fresnel zone. We
anticipate that the degree of improvement of the tomographic image depends
primarily on an accurate estimate of the phase Wor in the diffraction integral. Thus
r may have to be calculated iteratively using previous tomographic results.
Preliminary results suggest that inclusion of the diffraction integral can be a significant
improvement even when inverting only travel time residuals (c.f. Whitten and King,
1990). In the latter case only the real part of the integral is used in the inversion; the
imaginary part gives the amplitude perturbation.

Any of the velocity- or slowness parameterization schemes in common use will convert
equation (23), (22) or (21) to a form that is linear in the slowness parameters, so that
standard inverse methods can be applied. The common case of a block
parametcrization is special in the sense that the diffraction term contributes only
diffractions from the block boundaries. Thus, at the boundary Sk between two
adjacent blocks j and k:

v s= - (6s]-7k n 6 Sk

where nj, is the surface normal pointing into block k, and 6S ), is the delta-
function on S . The diffraction term is then

8uid(xt) = s, [ 3s] nk.
j k>j kJ

f W4 (V 0.V 1)  -(- --oe -- ) f(t --c )dS (24)

Sj 1p0-p'i 2

where the sum over k is restricted to blocks adjacent to j, and the additional
restiiction k>j is used to avoid duplicating interfaces.

8



Elastic scattering

The problem of first-order elastic scattering (Born approximation) has been treated by
many authors (e.g. Hudson, 1977). Our purpose here is to emphasize the agreements
and differences between the results for the elastic and the acoustic case. In particular,
we are interested in the range of validity of the acoustic scattering assumption. We
assume an isotropic medium, and use 6p, 6K and 6g to denote the perturbations
in density, incompressibility and rigidity, respectively. The first Born approximation
leads to

u (X, G *S dV (25)

with (Doornbos and Mondt, 1979):

S = - +p ( 8-1) v (v.u 0 ) - 61*vXvXu 0

3

+ (v.u 0 ) V(8-2 8l.0 + 2e 6p (26)
3

and the strain tensor e0 has the elements

e j = -4(a i 3+ a U

Substituting equations (2) and (3) for the incident wave and the Green's function, we
can write the scattered field in a form similar to equation (4):

1~ 3
6u(xt) - - v(x) A°A' p( aigi ) f(t-T-T) dV (27)

where

9



9, 6 p/p , a, = (v ° .v')

g2 = 8K/K , a 2 = -(i--C) (Y .V0) (Y'.V')3

g3 = V/p , a3 = -C c!o  (y0. vI) (vO-y') + (y*.yl) (VO.VI.)

3 (YO.V O) (Y/. ) (28)

Here y and v are unit vectors in the direction of wave propagation and
displacement, respectively, c is the wave velocity (a for P, P for S), and e=032/c2.
Quantities associated with the incident and scattered wave have superscripts 0 and
1, respectively.

lxamnining equations (27) and (4) reveals that the acoustic factor

V., = 2c 6s (v0 .vl) -- -2 ._C (V° .v') (29)
C

is replaced, for elastic scattering, by

3
V01 = I ag 1  (30)

Thus we can use equations (28)-(30) to assess the validity of acoustic scattering. The
velocity perturbations can be expressed, assuming Q2/2=3:

2 P . 5 61C __ 4 _ E
(X p 9 K 9 IL

(31)
2 8 _6

Sp P

For P-.P scattering, from equation (28) and using cos 0=(y 0. y 1):

Vel(P) = C 5 6K _ 2 (3cos 2 i-1) AE (32)
p 9 K 9 IL

and for S-S scattering: 10



V. 1 (S) = cosp A - (2cos 2(p-1) A (33)p

Thus for forward scattering in the so-called specular direction, P=O and Vac=VC1 in
the Born approximation, for both P and S waves (Aki and Richards, 1980). For
o,, the error (Vi/-Ve, ) depends on the relative perturbations of p, K and A,. To
get a rough estimate of this error we adopt, from Anderson (1989):

=2 8a - 1.5
a p

hence = 4.5 1.35 6P~K

With these quantities, the relative error

C = (Vac-v.l) / Vac

increases, for P from 0 for =00. to 20% for =27 , and to 100% for P=600.
The relative error for S increases from 0 for 0=0, to 20% for 0=180, and to
100% for o=400. To judge the significance of these numbers, consider a typical
tomographic experiment with teleseismic data aimed to map upper mantle structure
at about 100 km depth from data near 600 epicentral distance. Including half the
Fresnel zone in the diffraction term gives o,,- -100 for P at I second period, and

,max -500 at 20 seconds period. If 20% is taken as an acceptable relative error, then
the acoustic approximation is acceptable for P up to a period of about 5 seconds.
The corresponding numbers for S are: 0 ,,. -100 at I second period, 0,, -40 ° at
20 seconds period, and the acceptable period range for the acoustic approximation is
up to about 4 seconds. For longer periods, diffraction tomography might proceed
using a prescribed scaling relation between the relative perturbations of p, K and

I'11



A boundary perturbation

Perturbations of internal boundaries and of the Earth's surface must be treated
different from relatively smooth velocity perturbations. The difference arises both in
seismic tomography and in scattering theory. In tomography the travel time
perturbation of a wave being transmitted through or reflected from a boundary that is
displaced over a distance h, is obtained by a simple geometrical analysis of the wave
front:

= (pz-pl) h (34)

Without loss of generality we assume here and in the following that the reference
level is horizontal. Then h is the vertical displacement of the boundary from the
reference level, and p, is the vertical component of the slowness vector.
Superscripts 0 and I denote the incident and scattered waves, respectively; in what
follows we will use the same notation to identify the velocities and densities at the two
sides of the boundary. Using scattering theory, we want to generalize the above result
in analogy to the result (23) for velocity perturbations, such that equation (34) still
gives the ray contribution in addition to the diffraction term.

In scattering theory, the generalization of reflection/transmission coefficients for a
plane boundary to coefficients for a rough boundary has been given in the form of a
perturbation series (Doornbos, 1988). For our present purpose we need the first two
terms of this series, including the Born approximation. Let the reference level be the
z=O plane, then the boundary perturbation is characterized by z=h(f. ,f), where
fr ,4fy are coordinates in the z=O plane, and the (non-unit) normal to the boundary
is n -(-,h/dx, -,h/,dy, 1)T. It is appropriate to determine first a displacement-
traction vector at the boundary. Let u be the displacement components, rk the
associated stress tensor, and 0)= Tjkk the modified traction components. The
appropriate displacement-traction vector is, for a solid-solid interface:

d = (uX, uy, u, o /iW, o'/iW) T

For a free surface:

d = (u ,uyu4T

where the superscript - denotes the field below the surface. For a solid-liquid
interface:

12



d = (Ux, U;,n.Un.1/i(i) T

where ux+,uy+ are horizontal displacement components in the solid which is here
assumed above the interface.

The solution for d is obtained in the horizontal wavenumber domain. We define

+00

D(ke) = ff d (t,,h) exp (-ik..t) d~t (35)
-00

where 't=( x ,4yI and kt=(k. ,ky)T. We also define an incident wave vector
A°(kt ) exp (ikt0 f) containing the wavenumber components of up- and downgoing
P, SV and SH. The complete solution for d(f t ,h) would require D(kt ) for all
wavenumbers k,. Within the present context this is not a practical solution. Instead
we will approximate the solution for d in such a way that it is consistent with D(ktl )

for the particular wavenumber kl given by the Green's function (equation 3) that
accounts for propagation between the scatterer in e and the receiver in x. The
required approximation is

S(tt,h) = (PO) - (k2-) exp (iKh)

P( (kl) + - z* (kl) + - Y (k") (PO) -1 (ko) AO (k*)

exp (ik.&,) (36)

Here PO, XI) and r are reflectivity matrices introduced by Doornbos (1988). They
play the same role as the matrices arising in the calculation of ordinary reflection/
transmission coefficients. In fact, P0 is just the matrix needed for calculating the
coefficients for a plane horizontal boundary. The additional matrices are needed to
satisfy conditions at the sloping boundary. The diagonal matrix exp(iKh) contains the
vertical wavenumbers for up- and downgoing P, SV and SH. It acts as a propagator
matrix between the reference level at z=O and the boundary at z=h.
Substituting iI( , ,/h) in equation (35), expanding exp(iKh) in a Taylor series, and
retaining the zeroth and first order terms:

D(kt) - D (0) (ks) + D(1 ) (k , )

13



it is easily verified that the resulting expressions for (0) and DO) are indeed
equivalent to those given by Doornbos (1988).

The scattered wave coefficient vector B(kt) can be obtained by the matrix integral
equation (c.f. Doornbos, 1988):

+00

B(kl) = fexp (ikh) (P1 (k) - ax X" (k') - ahY'k)
-00

d(&,,h) exp( -ik".Q© dt, (37)

where P1 X1 and Y' are reflectivity matrices in analogy to the ones introduced in
equation (36). We assume now that there is just one type of incident wave Ai.0, such

that in equation (36) we do not need the complete inverse matrix (PO)-(ktO), but only
the appropriate column (PO)i-n (kt0). Likewise we consider one type of scattered
wave B., and we need in equation (37) only the appropriate row vectors P,€IT, XCIT

and y.1T, and the appropriate vertical wavenumber K'. We note that for any of
the up- and downgoing waves, the vertical wavenumber K= + (,p, where p. is the
vertical component of the slowness vector. In the following we use K= (Z and
K'=-dpz' (this follows from the sign conventions used in Doornbos, 1988).
Combining equations (36) and (37) with the above specifications, and expanding
exp(iAZh) and cxp(-i&wp, h) in Taylor series, we get the following result up to order
one:

+00

a,,(kl> - ff(R(k1,k,) - i,hR1(k",kO) + Vh.R"(kl,k)

-0

0
Ain( (4) exp[-i(k-k)' )j d 4) (38)

(k'k0)= P T(kl)(PO) J (k) (39)

k, ko .',r ( (P ) -  (k ) * ( 4 ) X O)-'(k) (40

R 11 ( k X :* (k"L ' - ( *) -k(L*
klk) .,rk (PO)1I(kl) I~k) (P0) 'Y* (kl) in

(41)

14



The expression for the scattered field u(xt) requires a slight modification of the
result (38). Firstly, the coefficient B.(k tl) is associated with the plane wave
component of a Weyl integral. It can be associated with the Green's tensor (3) by
rewriting, in the frequency domain:

O(, E, ca) = v (x) vlr( ) A' ( ) exp (iGT )

= -2ibpc 2p1 v(x) Q1(k") A'(E) exp(i T') (42)

where Qr(k,' is the appropriate factor in the Weyl integral. Secondly, the
wavenumbers of the incident and scattered waves, kt0 and ktl, vary with scatterer
position f, on the boundary. Combining equations (38) and (42) and transforming
the result to the time domain, we get

u(x,t) = f W [(R+vh.R"1) f(t-) - hR'!f(t-r)] y1Z dS (43)
S

where W is given by equation (6), and y.' is the vertical component of the unit
wave direction vector, i.e. p 1= yllcl. The term with R produces the zeroth order
field. The perturbation is due to the terms with R' and R". There may be an
additional perturbation due to rapid lateral changes of R; we consider this possibility
in the next section, but ignore the perturbation here. Thus:

8u (X, t) = -f W (hR'f ( t-) - vh. R11f ( t-0)Y dS (44)

The term with h can be treated in the same way as equation (5). Thus we transform
the integral:

Tu

f J h R1 f(t-) Y1 dS f f(t-T) f W Rh Jdl, d- (45)
S rm

where 1, is the trajectory r =conslant (i.e. an isochron, see Fig. 2). Repeating the
steps leading to equation (8), we get here
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- f (t-,) J WRlh j, y' d1T f (t-r") f W Rlh Jyl dl~u
TM TU

f W R 1ah (t-) j 1 dS (46)

Note that in the first integral, RI is to be evaluated for ktl=kt°. From equations
(39) and (40):

Rl(k o ko) = (pO-pt) R(kok:) (47)

To evaluate the first integral of expression (46), we use the result (10) for an
infinitesimal element of surface normal to the scattered ray. The factor y,' is
needed for the transformation to an element of surface on the reference plane. Thus
(c.f. equation 11):

f Jy d _ = 2 (48)

Noting that the spreading matrix Q0 in equation (12) applies to the incident wave,
we have to multiply I QO by the factor y,,'/ y 0 upon transmission through the
boundary ((Cerven, 1985). The amplitude factor A in equation (16) is similarly
modified by the factor R(p'c' y,'/pOc° ,°)1/ 2.

Thus using equation (48), (12), (13), (14) and (16), and substituting (47),

8 U ~(X,t 0 f (~ W R Ih Jm y'dm

PZ- Pz) h df(x, t) (49)

It is argued, as in the previous section, that the second term of expression (46)
represents diffraction from the boundary of surface S, and this effect should be
deleted in practical circumstances (the implicit assumption being h=constant outside
S). To evaluate the last integral of (46), we repeat the development summarized by
equations (17)-(20), except that we use 2-D instead of 3-D vectors, i.e. we express our
results in terms of horizontal slowness vectors p,0 and p,', where w.,1 =k,0  and
(At i=k 1 :



ah 0p 1p 0 12-h (Pc-P) vh / IP -PI (50)

and an area bounded by 6T =constant close to the ray can be excluded from
integration.

Summarizing the results expressed by (45), (46) and (50), we can rewrite equation
(44):

8u i (X , t) - aU(X, t) + 8uId(x, t)

=-(P 0-P 1) h d '(x, t0

- w vh .( R - R" )(t--t) y' dS (51)
Ip*-p 12

In the frequency domain:

au 1 (X,c) - (Z, () + aui(x, W)
0-o 1)h fzw

io PZzhu xo)

+ iw F(w) f W vh ((P-pc) R-R exP(iwi Y' dS (52)SI P1¢12 xp i ) zdS 52

The Rytov approximation is:

in U , (, P 0 1 h

1n ff(,( A ( (PZ-~

+ 1 "Afx W vh . __ R__ - Ru) exp [1(r -TX)IY' dS)(53)Vi (x ) A l x ) S jPt-PI I

Note the similarity between equations (51)-(53), and equations (21)-(23) for acoustic
scattering. The first term in these equations is the usual delay time of seismic
tomography. However, the diffraction integral for a boundary perturbation contains
an additional term Pl.R" that has no counterpart in acoustic scattering. This term
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is needed to satisfy conditions at a non-horizontal boundary. Examination of R' and
R" (equations 40 and 41) suggests that the two diffraction terms can be of

comparable magnitude.

All of the remarks regarding the implementation of acoustic diffraction tomography
following equation (23) are also relevant to boundary tomography following equation
(53). Thus the integration surface S can be chosen to correspond to (an appropriate

fraction of) the Fresnel zone, and the time r may have to be calculated iteratively
using previous tomographic results for h. The calculation of RI and R" in

equation (53) is more elaborate than the calculation of the corresponding factor

(v o. v1) for acoustic scattering. On the other hand, R' and R"I are frequency
independent, and the integration in equation (53) is 2-D rather than the 3-D

diffraction integral in equation (23).



Perturbation of boundary conditions

We reconsider the first term of the scattered field, in equation (43). The integral with
the factor R can be evaluated in the same way as the integral with R 1, using
equations (45)-(50). This leads to:

f WR f(t-0) yI dS = u(x,L t) +- ub(X. t) (54)
S

and

:Ub(X, t) f W ( Pt) v R f(t-T) y' dS (55)
S 1P,-PtI[2

In the frequency domain:

8UI(XW) F( ) f W -_P ) ._ _ v R exp iwx) yl US (56)
S Ip?-ptI2

In order to assess the significance of 6U~b due to vR, relative to 6U~d due to /z
in equation (52), we write

vR = R 8P+ + R - R + aR 6K-
apI ap- &K N-

aR O R+ ag" + 5R - (57)

Hence perturbations 6p, 6, 6 A along the boundary produce variations 6R of the
order

RA-- . R a- , Ra1-.
p K 1

On the other hand, a comparable variation due to a perturbation 6h can be
deduced from equation (52), and is of the order

wR (p,-p,) 6h
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Consider for example a bottomside reflection (PKKP) at the core-mantle boundary.
A typical ray parameter value might be 2.5 s/d. Take p'=-pzO. Then

S(p-p') 6h - 1.5 6h at 1Hz.

Thus relative perturbations 6p/p, 6KI, Sj/g of the order of 10% would be needed
to simulate the effect of a boundary perturbation 6 of the order of 100 m. This
order of magnitude argument suggests that in the above situation, the effect of a
boundary perturation 6 dominates that of moderate perturbations of the elastic
constants and density along the boundary. However the diffraction term due to h
and 6 decreases with increasing wave period and incident angle; hence in practice
the relative importance of 6R and 6 would have to be assessed for the actual
situation at hand.
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Conclusions

Diffraction tomography can be formulated in such a way that it makes explicit the
phase delay perturbation from ray theory which is the basis of ordinary seismic
toi ography. The phase delay term depends on the velocity perturbations along the
ray in both acoustc and elastic media, and when the ray crosses a boundary an
additional phase delay is induced that is proportional to the boundary level
perturbation.

The additional diffraction term involves both phase and amplitude perturbations. The
diffraction depends on the gradients of the velocity perturbation in an acoustic
medium, the gradients of the elastic and density perturbations in an elastic medium,
and the gradients of the boundary perturbations the wave is crossing. The diffraction
term arises also in circumstances when the primary wave is cut off from the receiver,
for example in a shadow zone. The formulas for the diffraction term due to acoustic,
elastic and boundary perturbations are very similar, but the boundary perturbation
requires an additional term to satisfy conditions at a sloping boundary. In the present
formulation, numerical diffraction from the nonphysical boundary of the region under
study appears as a separate term and can thus be easily removed. This is consistent
with the assumption of constant perturbations outside this region, in contrast to the
conventional formulation which implies that the perturbation drops to zero outside
the region under study. This aspect is especially important when inverting travel
times, or relatively short waveform sections.

The difference between an elastic and an acoustic medium is immaterial in ordinary
seismic tomography since only velocity perturbations can be retrieved. In diffraction
tomography, the difference may be neglected when short-period data are used. In a
realistic geometry that is representative of tomography for upper mantle strucutre, the
acceptable period range was found to be about 5 seconds for P and about 4 seconds
for S, if half the Fresnel zone is included and the acceptable relative error is 20 %.
For longer periods a preferred alternative would be to invert for scaled perturbations
of the elastic constants and density.

Diffraction from a boundary can be induced not only by gradients of the boundray
level, but also by lateral gradients of the elastic constants and densities along the
boundary. The relative importance of such perturbations of boundary conditions
depends on the wave period and incidence angle. A rough order of magnitude
calculation suggests that in some recent tomographic studies of the core-mantle
boundary, the effect of boundary level perturbations is probably more important than
the effect of up to moderate perturbations of the elastic constants and densities.
However one might have to reassess this conclusion in other circumstances.
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tr. timeE"Mr

Srn tr. time I;

0

Fig. I - Schematic diagram showing the ray between 0 (source) and 1 (receiver), with
stationary travel time T.. Also shown is a section of isochron surface S,, and
the surface normal to the ray is SM. Surface S, is defined by all points f"
such that the total travel time of the two rays connecting (f, 0) and (f, 1) is
T.
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O0 tr. time 1 m

SS f"tr t imeE1

Fig. 2 - Schematic diagram showing the reflected ray between 0 (source) and I
(receiver), with stationary travel time r.. Also shown is the isochron 1, on
the reflecting surface S, and the surface normal to the reflected ray is S,,,. A
similar diagram applies to a refracted ray.
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